Lawrence Livermore
National Laboratory

Progress Porting ALE3D to the GPU El

Arlie Capps, Peter Robinson, Joseph Chavez {capps2, robinson96, chavez35}@linl.gov

PAIN POINTS, WINS

Porting ALE3D to the GPU requires foundational capabilities for | | Speedup: Loop and pointer type replacement touches the entire code
software acceleration. The code size, age, and heavy use and devel- walltime, 1 production node |
opment impose constraints on these facilities. walltime, 1 Sierra preview node E zz :XZSE\;JQ'Q(? éf;;;’,?y) e No way around an enormous amount of work

O vs Broadwell (36-way)

Capabilities Constraints Sierra preview node uses one . e Tools (text and GUI) can automate some of the process and
Code execution Portable of 20 POWERS8+ cores with help with consistency

Data movement Minimally intrusive one of four P100 GPUs (single- ® RAJA macros are flexible

Performance monitoring Easy to understand threaded). o

We chose the RAJA library to enable execution on the GPU, CHAI Production nodes and speedups o e variants for iterating over faces, nodes, other data structures

to move data between host and device, and developed the SPOT shown in bar chart.

e RAJA_SCAN variant easily added; large performance gain

tool for performance monitoring. : : ~ 7 "3DSedov 3D Shaped Charge
P 5 Main focus has been. advection (1M elem\; (4.8||[\)/| elem) ¥ e More than one backend (CPU, CUDA to GPU, soon OpenMP)
and Lagrange; MPI is the next
DESIGN major effort. e Macro, so we can print code context on error

CHAI abstraction is powertful

Enable device acceleration file-by-file (incremental porting!)

SHAPED CHARGE ON GPU

RAJA — https://github.com/LLNL/RAJA e Data copy (ONLY) on touch (cast to pointer)

e Captures loop bodies as lambdas, variables by value e This can be foiled by pointer aliasing

e Launches lambda as a CUDA kernel (can also run on CPU; o When all else fails, dump all data on transfer

OpenMP 4 backend in progress) e Because CHAI is an abstraction, we plan to use UM backend

CHAI — https://github.com/LLNL/CHAT when it’s available and copying when it isn’t

e Copies data between host and device Warts

e Capture by value: this pointer is a host address, use on device

e ManagedArray<type> object replaces bare type * in code,
: A) P P will segfault; virtual functions have similar problem

tracks host and device buffers

e Copy to host on raw pointer cast, to device when CUDA ker- — this capture (CUDA/C++17) may help

nel starts — vtable idiom currently under development

e Some huge loops, some tiny loops
Main Tasks to port a file: g€ 100p y 100p

— Loop fission can sometimes help register spilling

e Change all loops to our RAJA macro wrappers:
RAJA_LOOP_BEGIN (i, 0, n) {
// ... loop body ...
} RAJA_LOOP_END

— Loop tusion or persistent kernels may help launch over-
head

e Some loops need (extensive) rewriting in other ways

PERFORMANCE MONITORING

e Changeall int *,real8 *,etc.to int_ptr, real8_ptr (which
are ManagedArray<int>, ManagedArray<real8> typedet’'d to
more convenient name)

We track timing hierarchy for all builds and problems over time. - Adopt scan idiom

SPOT, a web application, lets us drill down to see what'’s slow. — Calls into GPU-unfriendly libraries (few of these so far)

o At top of tile, write

#define GPU_ACTIVE u N

Then address remaining issues, including: Demo on

66666

set logarithmio scale | toggle x-axis '
e Move log and error I/0O out of RAJA loops) demand!

This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-POST-736959

e Refactor loop counting and summing operations to use RAJA
reduction types

